DSpace@OSTİM Teknik Üniversitesi

Nonlocal Impulsive Fractional Integral Boundary Value Problem for (rho(k),phi(k))-Hilfer Fractional Integro-Differential Equations

Basit öğe kaydını göster

dc.contributor.author Alzabut, Jehad
dc.date.accessioned 2023-02-01T07:17:28Z
dc.date.available 2023-02-01T07:17:28Z
dc.date.issued 2022-10
dc.identifier.uri http://earsiv.ostimteknik.edu.tr:8080/xmlui/handle/123456789/277
dc.description.abstract In this paper, we establish the existence and stability results for the (rho(k),phi(k))-Hilfer fractional integro-differential equations under instantaneous impulse with non-local multi-point fractional integral boundary conditions. We achieve the formulation of the solution to the (rho(k),phi(k))-Hilfer fractional differential equation with constant coefficients in term of the Mittag-Leffler kernel. The uniqueness result is proved by applying Banach's fixed point theory with the Mittag-Leffler properties, and the existence result is derived by using a fixed point theorem due to O'Regan. Furthermore, Ulam-Hyers stability and Ulam-Hyers-Rassias stability results are demonstrated via the non-linear functional analysis method. In addition, numerical examples are designed to demonstrate the application of the main results. en_US
dc.language.iso en en_US
dc.subject Ulam-Hyers stability en_US
dc.subject fixed point theorems en_US
dc.subject integral multi-point boundary conditions en_US
dc.subject impulsive conditions en_US
dc.subject (rho, phi)-Hilfer fractional derivative en_US
dc.title Nonlocal Impulsive Fractional Integral Boundary Value Problem for (rho(k),phi(k))-Hilfer Fractional Integro-Differential Equations en_US
dc.type Article en_US


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster